个人信息

博士生导师
研究员


Email: wangpeng@cemps.ac.cn
个人网页: https://pengwanglab.com

研究方向

植物光合机构塑造与运转调控

王鹏

个人简介

1995-1999,河北大学生命科学学院,学士
1999-2001,河北省农林科学院,研究助理
2001-2007,中国科学院上海生命科学研究院植物生理生态研究所,博士
2007-2008,获英国皇家学会学者基金资助于牛津大学进行访问研究
2009-2015,于英国牛津大学及国际水稻研究所进行博士后合作研究
2015-2018,于英国牛津大学植物科学系进行博士后研究
2018.09-至今,中国科学院上海生命科学研究院植物生理生态研究所,课题组长、研究员

研究工作

光合作用是植物的一种典型的受精细调控的复杂性状。作为重要的植物生命活动,光合作用的改造在未来作物改良理论与实践中具有巨大潜力。光的感知、信号传导、基因表达调控、细胞生化反应及光合产物运输等过程形成复杂网络,并通过关键转录因子连结着植物激素以及其它环境响应机制。C4途径是一种光诱导而运行的高效率光合作用。C4叶片具有特殊的“花环状结构”,通过叶绿体超微结构分化,物质和能量代谢区域化,形成CO2浓缩机制,提高光合效率。光/激素信号、叶绿体信号、细胞/组织的发育及其光合属性之间存在着立体调控关系,其中的探索空间非常广阔,而C4途径可作为交叉学科研究与应用的开放平台。

主要研究方向:

研究组从事植物光合机构塑造和高效CO2浓缩机制研究。针对以植物C4光合途径和蓝藻CO2浓缩机制为代表的高效光能利用和CO2同化策略,在光合、发育和环境适应等层面开展系统研究。相关研究包括:

1)C4光合叶片和叶绿体关键结构建成与运转调控(探究C4花环结构经典问题)
C4光合作用通过在叶片结构、细胞结构、生化特征等方面特化而成,具有比C3途径高40%以上的光能利用效率,和更高的水分和氮素利用效率,对其研究和应用有望促进高效光合固碳的实现。以C4叶片结构与功能的建成和调控为首要切入点,研究C4叶肉细胞及维管束鞘细胞特异性起始和分化、“花环状”连续排列和“区隔化”代谢运转的遗传调控机制,建立作物C4 改造的理论及技术体系。

2)高效CO2浓缩与光合机构塑造的协同机制(解析高效光合作用的通用策略)
C4植物和蓝藻的高效光能利用策略,均涉及将CO2转运并浓缩在维管束鞘细胞或羧体特定区域,需要细胞内和细胞间相应结构塑造以及物质和能量代谢的协同支撑。通过研究光、CO2、转录因子、氧化还原状态等内外因素对C3和C4细胞及叶绿体、线粒体等细胞器特殊功能化的调控,逐步深入拓展到高效光合CO2浓缩同化通用机制的解析。

3)高效光合及其环境适应遗传调控网络的解析与应用(适应全球变暖的高效固碳农业)
光合作用研究在当前全球CO2排放增加及其温室效应引起的气温升高的大背景下,对于农业生产与环境协调发展的研究具有独特切入点。研究C4光合途径和CO2浓缩机制的过程中,有望发掘有效应对高温、干旱,以及高效吸收CO2的光合作用联动解决方案用于作物改造,包括环式光合电子传递途径及其调控机制。

主要成果

    1. Ma B*, Zhang Y, Fan Y, Zhang L, Li X, Zhang QQ, Shu Q, Huang J, Chen G, Li Q, Gao Q, Zhu XG, He Z*, Wang P* (2024) Genetic improvement of phosphate-limited photosynthesis for high yield in rice. Proc Natl Acad Sci U S A. 121(34):e2404199121. doi: 10.1073/pnas.2404199121.

    2. Zhang T, Zhang R, Zeng XY, Lee SH, Ye LH, Tian SL, Zhang YJ, Busch W, Zhou WB, Zhu XG, Wang P* (2024) GLK transcription factors accompany ELONGATED HYPOCOTYL5 to orchestrate light induced seedling development in Arabidopsis. Plant Physiology doi: 10.1093/plphys/kiae002.

    3. Zhang Q, Tian S, Chen G, Tang Q, Zhang Y, Fleming AJ, Zhu XG, Wang P* (2024) Regulatory NADH dehydrogenase-like complex optimizes C4 photosynthetic carbon flow and cellular redox in maize. New Phytologist 241(1):82-101. doi: 10.1111/nph.19332.

    4. Li X, Li J, Wei S, Gao Y, Pei H, Geng R, Lu Z, Wang P, Zhou W* (2023) Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. Plant Physiology doi: 10.1093/plphys/kiad561.

    5. Zhang Y, Fan YF, Lv XT, Zeng XY, Zhang QQ, Wang P* (2023) Deficiency in NDH-cyclic electron transport retards heat acclimation of photosynthesis in tobacco over day and night shift. Frontiers in Plant Science 14:1267191. doi: 10.3389/fpls.2023.1267191

    6. Dong WT, Chang TG, Dai HL, Yang WB, Su Y, Chao DY, Zhu XG, Wang P, Yu N, Wang ET* (2023) Creating a C4-like vein pattern in rice by manipulating SHORT ROOT and auxin levels. Science Bulletin https://doi.org/10.1016/j.scib.2023.10.005.

    7. Chen X, Zheng F, Wang P, Mi H* (2023) Novel protein CcmS is required for stabilization of the assembly of β-carboxysome in Synechocystis sp. strain PCC 6803. New Phytologist 239(4):1266-1280.

    8. Wei S, Li X, Lu Z, Zhang H, Ye X, Zhou Y, Li J, Yan Y, Pei H, Duan F, Wang D, Chen S, Wang P, Zhang C, Shang L, Zhou Y, Yan P, Zhao M, Huang J, Bock R, Qian Q, Zhou W* (2022) A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 377(6604):eabi8455. doi: 10.1126/science.abi8455.

    9. Li X, Wang P, Li J, Wei SB, Yan YY, Yang J, Zhao M, Langdale JA & Zhou WB* (2020) Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Communications Biology 3, 151. doi: 10.1038/s42003-020-0887-3.

    10. Vlad D, Abu-Jamous B, Wang P & Langdale JA* (2019) A modular steroid-inducible gene expression system for use in rice. BMC Plant Biology 19(1): 426. doi: 10.1186/s12870-019-2038-x.

    11. Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP, Bandyopadhyay A, Quick WP, Furbank R, Sage TL, Langdale JA* (2017) Re-creation of a Key Step in the Evolutionary Switch from C3 to C4 Leaf Anatomy. Current Biology 27: 3278–3287

    12. Wang P, Hendron RW, Kelly S* (2017) Transcriptional control of photosynthetic capacity: conservation and divergence from Arabidopsis to rice. New Phytologist 216: 32–45

    13. Wang P, Karki S, Biswal AK, Lin HC, Dionora MJ, Rizal G, Yin X, Schuler ML, Hughes T, Fouracre JP, Jamous BA, Sedelnikova O, Lo SF, Bandyopadhyay A, Yu SM, Kelly S, Quick WP, Langdale JA* (2017) Candidate regulators of Early Leaf Development in Maize Perturb Hormone Signalling and Secondary Cell Wall Formation When Constitutively Expressed in Rice. Scientific Reports doi: 10.1038/s41598-017-04361-w.

    14. Wang P*, Vlad D & Langdale JA (2016) Finding the genes to build C4 rice. Current Opinion in Plant Biology 31: 44–50

    15. Wang P, Kelly S, Fouracre JP & Langdale JA* (2013) Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant Journal 75: 656–670

    16. Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, Shaw MK, Westhoff P, Slamet-Loedin IH, Quick WP, Hibberd JM & Langdale JA* (2013) Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta 273: 481–495

    17. Chen J, Wang P, Mi HL, Chen GY & Xu DQ* (2010) Reversible association of ribulose-1, 5-bisphosphate carboxylase/oxygenase activase with the thylakoid membrane depends upon the ATP level and pH in rice without heat stress. J Exp Bot. 61(11): 2939–2950

    18. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ & Langdale JA* (2009) GLK transcription factors co-ordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21: 1109–1128

    19. Wang P, Shen YG & Mi H* (2007) The progress in research on the reduced nicotinamide adenine di(tri)nucleotide phosophate [NAD(P)H] dehydrogenase complex and chlororespiration. Journal of Plant Physiology and Molecular Biology 33(2): 91–100 (in Chinese)

    20. Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY & Mi H* (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiology 141: 465–474

    21. Wang P, Ye JY, Shen YG & Mi H* (2006) The role of chloroplast NAD(P)H dehydrogenase in protection of tobacco plant against heat stress. Science in China Series C: Life Sciences 49(4): 311–321

    22. Wang P, Ye JY, Mi H* (2005) Determination of NADP in tobacco leaves under photosynthetic conditions. Plant Physiology Communications 41: 649–651 (in Chinese)