郑慧琼
个人简介
1985 -1989. 安徽师范大学, 本科
1989-1992. 山东大学, 硕士
1992-1996. 中国科学院植物生理研究所, 博士
1996-1997 .中国科学院植物生理研究所,助理研究员
1997-2000 .美国Colorado大学, 博士后
2001-2002.德国Tuebingen大学,访问学者
2000-2005. 中国科学院植物生理生态研究所, 副研究员
2006.1-至今.中国科学院植物生理生态研究所,研究员, 研究组长
研究工作
已知的生物都是在1g的地球重力环境中进化而来,其生长、发育和生命活动的各个方面均与地球重力环境相适应。当地球植物飞向太空后,昼夜不再是24小时周期,更重要的不再是1g重力,而变成微重力、低重力或超重力(非地球重力)。重力的变化会严重地影响到植物的生长发育和代谢活动,那么,在太空中生长的植物的内在生理和遗传机制会怎样适应地球上从未有过的(微)重力新环境呢?为了回答这个问题,本研究组先后利用国家载人航天工程项目“神舟四号”、“神舟八号”飞船和“天宫二号”空间实验室,以及“实践八号”和“实践十号”返回式科学实验卫星,研究了空间微重力条件下拟南芥和水稻的生长发育、细胞生物学、基因与蛋白质表达等,获得大量的空间环境影响植物生长发育的直接证据。为了进一步了解植物对空间(微)重力适应性的分子机理,目前我们的研究工作主要聚焦于微重力对植物幼苗生长、开花和种子发育调控等几个关键发育步骤的作用,包括空间微重力或模拟微重力条件下植物表型、代谢与生理变化规律、基因与蛋白质表达及其作用机理;细胞骨架在植物向重性反应信号传导中的作用;液泡发生与发育调控机理;高压快速冷冻样品固定与电子显微镜技术等研究。
主要成果
45 Xie, J.;Wang, L.; Zheng H*(2022). Molecular Basis to integrate microgravity signals into the photoperiodic flowering pathway in Arabidopsis thaliana under Spaceflight Condition. Int. J. Mol. Sci. 2022, 23, 63.
44 Wang L, Xie J, Mou C, Jiao Y, Dou Y, Zheng H*(2022).Transcriptomic analysis of the interaction between FLOWERING LOCUS T induction and photoperiodic signaling in response to spaceflight. Frontiers in Cell and Developmental Biology (accept)
43 Junyan Xie, Bin Qi, Chenghong Mou, Lihua Wang, Yuwei Jiao, Yanhui Dou, Huiqiong Zheng* (2021). BREVIPEDICELLUS and ERECTA regulate the expression of AtPRX17 to prevent Arabidopsis callus browning. Journal of Experimental Botany 10.1093/jxb/erab512
42 李莹辉,孙野青,郑慧琼,商澎,曲丽娜,雷晓华,刘红,刘敏,赫荣乔,龙勉,孙喜庆,王俊峰,周光明,孙联文(2021),中国空间生命科学40年回顾与展望。空间科学学报, 41(1):46-67
41 赵建福,王双峰,刘强,何振辉,张伟,李凯,周泽兵,罗兴宏,苗建印,郑慧琼,康琦,蔡伟明(2021).中国微重力科学研究回顾与展望。空间科学学报,41(1):34-35
40 Yuanyan Wu, Junyan Xie, Lihua Wang, Huiqiong Zheng*(2020). Circumnutations and growth of inflorescence stems of Arabidopsis thaliana in response to microgravity under different photoperiod conditions. Life. 2020 Mar 18;10(3):26. doi: 10.3390/life10030026.
39 Junyan Xie, HuiQiong Zheng* (2020). Arabidopsis flowering induced by photoperiod under 3-D clinostat rotational simulated microgravity. Acta Astronautica 166:567-572 doi.org/10.1016/j.actaastro.2018.11.014
38 Junyan Xie, Yue Zhang, Huiqiong Zheng* (2019). Cortical microtubule reorientation and its relation to cell surface texture of epidermal cells of Arabidopsis thaliana hypototyls under simulated microgravity conditions. Chinese Journal of Space Science(空间科学学报), 39(4):478-488
37 HuiQiong Zheng*, Lihua Wang, Junyan Xie (2019). Flowering of Arabidopsis and rice in space. In E Duan and L Mian ed, Life science in space:experiments on board the SJ-10 recoverable satellite. Springer, Beijing, China, pp189-204
36 Lihua Wang, Fei Han, Hui Qiong Zheng* (2018). Photoperiod-controlling guttation and growth of rice seedlings under microgravity on board Chinese spacelab TG-2. Microgravity Science and Technology 30(6):834-847 DOI: 10.1007/s12217-018-9644-3
35 Zheng H.Q.* (2018). Flowering in space. Microgravity Science and Technology 30(6):783-791 https://doi.org/10.1007/s12217-018-9626-5
34 郑慧琼(2017)微重力环境下的植物生长。科学 63(3):12-15
33 郑慧琼 (2016)。植物生长在太空。科学世界 5:8-11
32 王丽华,谢俊燕,张岳,郑慧琼*(2016). 空间培养箱中实时观察GFP标记开花基因表达方法与技术。空间科学学报。 36(4):562-565
31 王丽华,谢俊燕,张岳,郑慧琼*(2016). 空间培养箱中实时观察GFP标记开花基因表达方法与技术。空间科学学报。 36(4):562-565
30 Long M, Wang Y, Zheng HQ, Shang P, Duan E, Lü D (2015). Mechano-biological coupling of cellular responses to microgravity. Microgravity Science and Technology 27:505-514 DOI 10.1007/s12217-015-9464-7
29 Zhang Y, Zheng HQ* (2015). Changes of protein expression in plastid and mitochondria of Arabidopsis thaliana callus on board Chinese spacecraft SZ-8.
Microgravity Science and Technology 27:387-401
28 Zheng HQ*, Han F, Le J (2015). Higher plants in space: microgravity perception, response, and adaptation. Microgravity Science and Technology 27:377-386
27 张岳 潘璟 孙卫宁 郑慧琼*(2015). LED光谱对模拟空间培养箱中植物生长发育的影响. 空间科学学报 35(5):473-485
26 Zhang Y, Wang L, Xie J, Zheng HQ* (2015). Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta 241:475-488 ( DOI: 10.1007/s00425-014-2196-x )
25 Shen J, Xu G, Zheng HQ* (2015). Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stress. Protoplasma 252(1):173-180
24 Hu WR, Zhang XW, Zhang H, Zhao Y, Liu QS, Hou MY, Zhao JF , Kang Q, Wang YR, Xu SH, Kong WJ, Wang SF, Sun YQ, Hong HY, Huang YP, CaiWM, Long M, Zheng HQ, Duan EQ, Wang JF (2014) Space experiments on board the microgravity satellite SJ-10 Microgravity Science and Technology 26:159-169
23 Bin Q, Zheng HQ* (2013). Modulation of root skewing responses by KNAT1 in Arabidopsis thaliana. Plant J 76:380-392
22 张岳,郑慧琼(2013)环境条件对空间候选植物青菜的影响。航天医学与医学工程 26(3):243-248
21 徐国鑫,张岳,魏晓静,郑慧琼* (2012).三维回转器回旋条件下拟南芥胚胎发育与代谢活动分析. 空间科学学报, 32:230-237
20 Tan C, Wang H, Zhang Y, Qi B, Xu G, Zheng HQ* (2011). A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Science 2011, 9:72
19 张岳,郑慧琼(2011). 空间植物组织培养的优化方法探讨。载人航天17(3):58-64.
18 Zheng HQ*, Staehelin AL (2011). Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiology 155:2023-2035
17 Xu GX, Tan C, Wei XJ, Gao XY, Zheng HQ*(2011). Development of secretory cells and crystal cells in Eichhornia crassipes ramet shoot apex. Protoplasma 248:257-266
16 Wei N, Tan C, Qi B, Zhang Y, Xu G, Zheng HQ*(2010). Changes in gravitational forces induce the modification of Arabidopsis thaliana silique pedicel positioning. Journal of Experimental Botany 61:3874-3884. (IF, 4.271)
15 LV QD, Tang RJ, Liu H, Gao XS, Li YZ, Zheng HQ, Zhang HX(2009). Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family. Plant Science 176:650-661.
14 郑慧琼*,魏宁,陈爱地,王六发(2008)空间飞行与回转器回旋条件下青菜花开花与花粉发育的研究。空间科学学报, 28(1): 80-87.
13 Zheng HQ*, Wang H, Wei N, Chen AD, Wang LF, Zheng WB, Zhang T (2008). Live imaging technique for studies of growth and development of Chinese cabbage under microgravity in a recoverable satellite (SJ-8). Microgravity Science and Technology 20:137-143.
12 Li XG,Chen AD, Wang LF, Zheng HQ*(2007). Analysis of interspecific somatic hybrids Nicatiana tabacum L.(+ N. rustica) by electofusion in space. Journal of Plant Physiology and Molecular Biology 33(5):361-368.
11 魏宁,郑慧琼*(2007)细胞骨架和高等植物的向重力性。自然杂志 29(6):338-342.
10 郑慧琼*,陈爱地,王六发(2007)空间密闭系统中高等植物生长发育的研究。载人航天3:5-9
9 Wang H, Zheng H-Q*,Sha W, Zeng R, Xia Q-C (2006). A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation. Journal of Experimental Botany 57:827-835
8 Zheng H-Q*, Wei N, Wang L-F, He P (2006). Effects of Lantana camara leaf extract on the activity of superoxide dismutase and accumulation of H2O2 in water hyacinth leaf cells. Journal of Plant Physiology and Molecular Biology, 32(2):189-194.
7 郑慧琼*(2004). 空间微重力环境对植物细胞融合及代谢活动影响的研究,载人航天,1:9-12
6 Shao M-H, Zheng H-Q, Hu Y, Liu D-H, Jang J-C, Ma H, Huang H (2004). The GAOLAOZHUANGREN1 gene encodes a putative glycosyltrasferase that is critical for normal development and carbohydrate metabolism. Plant Cell Physiology 45(10): 1453-1460
5 Chen M, Xia X, Zheng HQ, Yuan Z, Huang H (2004). The GAOLAOZHUANGREN2 gene is required for normal glucose development of Arabidopsis. J. Plant Res 117:473-476
4 郑慧琼*,王六发,陈爱地,刘承宪(2003). 烟草细胞的空间电融合,科学通报, 48: 1438-1441(IF 0.783)
3 Zheng HQ, Staehelin LA (2001) Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells. Plant Physiology 125: 252-265
2 Yoder T, Zheng HQ, Todd P and Staehelin LA (2001). Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiology 125: 1045-1060
1 Staehelin LA, Zheng HQ, Yoder TL, Smith JD, Todd P (1999). Columella cells revisited: novel structure, novel properties, and a novel gravisensing model. Gravitational and Space Biology Bulletin 13(2): 95-100