个人信息

博士生导师
研究员

2020年获得“国家杰出青年基金”


Email: pengzhang01@cemps.ac.cn
个人网页: http://pzhangxtal.cemps.ac.cn/

研究方向

结构生物学

张鹏

个人简介

1998.9-2002.7 本科 山东大学生物化学与分子生物学系
2002.9-2008.1 博士 中科院上海生物化学与细胞生物学研究所
2008.2-2010.10 博士后 美国普林斯顿大学分子生物学系
2010.10-2020.4 研究员 中国科学院上海生命科学研究院植物生理生态研究所
2020.5-至今 研究员 中国科学院分子植物科学卓越创新中心

张鹏曾入选国家基金委“杰青”、“优青”、上海市“浦江人才”、“优秀学术带头人”、中国科学院上海生科院“S类”人才、英国皇家学会“牛顿高级人才”等。主持科技部、基金委、中科院、上海市及英国皇家学会多项科研项目。兼任中国生物物理学会理事,上海市生物物理学会理事长,中国植物生理与分子生物学学会代谢专业委员会副主任,中国植物学会整合组学专业委员会副主任,中国生化与分子生物学会农业分会常务理事,上海市科学技术协会第十一届委员会委员。

研究工作

研究组利用结构生物学、生物化学及遗传学方法,研究植物重要生理过程跨膜转运与信号传递的分子机理;揭示植物体生命活动的基本规律,为作物分子设计育种提供分子基础。研究工作以通讯作者发表在Nature、Nature Plants、Nat Struct Mol Biol、Cell Res、PNAS、Nat Commun、EMBO Rep、Mol Plant等期刊上。

1)植物跨膜转运的分子机理:跨膜转运是细胞与内外环境之间进行物质交流的主要方式,植物膜转运蛋白在营养物质吸收与运输、活性代谢小分子向活性部位转运等生理过程中发挥了关键作用。了解跨膜转运的分子与调控机制可以帮助理解植物生长发育与环境响应的基本规律,相关知识可用于指导作物性状/品质的分子设计与精准编辑。作为实验室的研究兴趣和长期目标,我们关注植物营养物质和激素跨膜转运的分子与调控机理,尤其是特定生理情景下的分子调节机制。

2)植物跨膜信号传递机理:跨细胞膜的信号传递是细胞与内外环境间进行信息交流的主要方式,许多活性小分子在跨膜信号传递中发挥着重要功能。探究植物活性小分子物质介导的跨膜信号传递机理也是我们的研究兴趣。

主要成果

    ORCID: 0000-0003-0408-2923

    1. Zhang X.#, Carroll W.#, Nguyen T.B.#, Nguyen T.H., Yang Z., Ma M.L., Huang X.W., Hills A., Guo H., Karnik R., Blatt M.R.*, Zhang P. *. GORK K+ channel structure and gating vital to informing stomatal engineering.Nat Commun. 2025. doi:10.1038/s41467-025-57287-7.

    2. Wang J.P.#, Du B.Y.#, Zhang X.#, Qu X.M., Yang Y., Yang Z., Wang Y.F.*, Zhang P.* Cryo-EM structures of Arabidopsis CNGC1 and CNGC5 reveal molecular mechanisms underlying gating and calcium selectivity. Nat Plants. 2025b. doi:10.1038/s41477-025-01923-z.

    3. Fang S.#, Yang Y.#, Zhang X.#, Yang Z., Zhang M.H., Zhao Y., Zhang C.S., Yu F., Wang Y.F.*, Zhang P.*. Structural mechanism underlying PHO1;H1 mediated phosphate transport in Arabidopsis. Nat Plants. 2025a. doi:10.1038/s41477-024-01895-6.

    4. Tan X.H. # , Wang D.P. # , Zhang X.W., Zheng S., Jia X.J., Liu H., Liu Z.L., Yang H., Dai H.L., Chen X., Qian Z.X., Wang R., Ma M.L., Zhang P., Yu N., Wang E.T.A pair of LysM receptors mediates symbiosis and immunity discrimination in Marchantia.Cell. 2025. S0092-8674(24)01466-1. doi: 10.1016/j.cell.2024.12.024.

    5. Hao Y., Zeng Z., Yuan M, Li H., Guo S., Yang Y., Jiang S., Hawara E., Li J., Zhang P., Wang J., Xin X., Ma W., Liu H. The blue-light receptor CRY1 serves as a switch to balance photosynthesis and plant defense.Cell Host Microbe. 2025. 33(1):137-150.e6. doi:10.1016/j.chom.2024.12.003.

    6. An N.#, Huang X.W.#, Yang Z., Zhang M.H., Ma M.L., Yu Fang., Jing L.Y., Du B.Y., WangY.F., ZhangX.*, Zhang P.*. Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16. Nat Plants. 2024. 10: 2052-2061. doi:10.1038/s41477-024-01839-0.

    7. Zhou C.M.#, Li J.X.#, Zhang T.Q., Xu Z.G., Ma M.L., Zhang P.*, Wang J.W.*. The structure of B-ARR reveals the molecular basis of transcriptional activation by cytokinin. Proc Natl Acad Sci U S A. 2024. 121. e2319335121. doi: 10.1073/pnas.2319335121.

    8. Huang X.W.#, ZhangX.#, An N., Zhang M.H., Ma M.L., Yang Y., Jing L.Y., WangY.F., ChenZ.G.*, Zhang P.*. Cryo-EM structure and molecular mechanism of abscisic acid transporter ABCG25. Nat Plants. 2023.9(10):1709-1719. doi:10.1038/s41477-023-01509-7

    9. Yang Z.#, Zhang X.#, Ye S.W.#, Zheng J.T., Huang X.W., Yu F., Chen Z.G.*, Cai S.Q.*, Zhang P.*. Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids. Nat Commun. 2023.14(1): 4879. doi: 10.1038/s41467-023-40624-z

    10. Wang C.#, Yu L.Y.#, Zhang J.Y.#, Zhou Y.X. #, Sun B., Xiao Q.J., Zhang M.H., Liu H.Y., Li J.H., Li J.L., Luo Y.Z., Xu J., Lian Z., Lin J.W., Wang X., Zhang P., Guo L.*, Ren R.B.*, Deng D.*. Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1. Nat Commun. 2023.14(1): 1727. doi: 10.1038/s41467-023-37411-1.

    11. Li L.Z., Xu Z.G., Chang T.G., Wang L., Kang H., Zhai D., Zhang L.Y., Zhang P., Liu H.T., Zhu X.G., Wang J.W. Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds. Nat Commun. 2023. 14(1):290. doi: 10.1038/s41467-023-35966-7.

    12. Ha Y.H. #, Zhang X. #, Liu Y.Q., Ma M.L., Huang X.W., Liu H.T., Zhang P.Cryo-EM structure of the CRY2 and CIB1 fragment complex provides insights into CIB1-mediated photosignaling. Plant Commun. 2023. 4(2):100475. doi: 10.1016/j.xplc.2022.100475.

    13. Liu H.Y. #, Lin J.S. #, Luo Z.P. #, Sun J. #, Huang X.W. #, Yang Y., Xu J., Wang Y.F., Zhang P., Oldroyd G.E., Xie F. Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula. Proc Natl Acad Sci U S A. 2022.119 (34): e2205920119.  doi: 10.1073/pnas.2205920119.

    14. Fang S. #, Huang X.W.#, Zhang X.#,*, Zhang M.H., Hao YH, Guo H., Liu L.N., Yu F., Zhang P.Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. Proc Natl Acad Sci U S A. 2021.118 (22) e2101632118. doi: 10.1073/pnas.2101632118.

    15. Xiao Y. #, Shao K. #, Zhou J.W. #, Wang L., Ma X.Q., Wu D., Yang Y.B., Chen J.F., Feng J.X., Qiu S., Lv Z.Y., Zhang L.*, Zhang P.*, and Chen W.S.*. Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Nat Commun. 2021.12 (1) 2828.doi: 10.1038/s41467-021-23095-y.

    16. Liu G.Q.#, Zhao Y.L.#, He F.Y., Zhang P., Ouyang X.Y., Tang H.Z.*, Xu P.*.Structure-guided insights into heterocyclic ring-cleavage catalysis of the non-heme Fe (II) dioxygenase NicX. Nat Commun. 2021.12 (1) 1301. doi: 10.1038/s41467-021-21567-9.

    17. Yang G.H. #, Hong S.#, Yang P.J.#, Sun Y.W., Wang Y., Zhang P., Jiang W.H. *, Gu Y.*.Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria.Nat Commun. 2021.12 (1) 790. doi: 10.1038/s41467-021-20974-2.

    18. Yao Y. #, Li J. #., Lin Y. #, Zhou J., Zhang P.*, Xu Y.*. Structural insights into phospholipase D function.Prog Lipid Res. 2021. 81: 101070. doi: 10.1016/j.plipres.2020.101070.

    19. Shao K. #, Zhang X. #, Li X. #, Hao Y.H., Huang X.W., Ma M.L., Zhang M.H., Yu F., Liu H.T.*, Zhang P.*.The oligomeric structures of plant cryptochromes. Nat. Struct. Mol. Biol. 2020. 27(5): 480-488.doi: 10.1038/s41594-020-0420-x.Views and News in NSMB

    20. Li J.X.#, Yu F. #, Guo H., Xiong R.X., Zhang W.J., He F.Y., Zhang M.H., Zhang P.Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res. 2020.30(1): 61-69. doi: 10.1038/s41422-019-0244-6.

    21. Thomas C., Aller SG, Beis K., Carpenter E.P., Chang G., Chen L., Dassa E., Dean M., Duong Van Hoa F., Ekiert D., Ford R., Gaudet R., Gong X., Holland I.B., Huang Y., Kahne D.K., Kato H., Koronakis V., Koth C.M., Lee Y., Lewinson O., Lill R., Martinoia E., Murakami S., Pinket H.W., Poolman B., Rosenbaum D., Sarkadi B., Schmitt L., Schneider E., Shi Y., Shyng S.L., Slotboom D.J., Tajkhorshid E., Tieleman D.P., Ueda K., Váradi A., Wen P.C., Yan N., Zhang P., Zheng H., Zimmer J., Tampé R. Structural and functional diversity calls for a new classification of ABC transporters.FEBS Lett. 2020.594(23) :3767-3775. doi: 10.1002/1873-3468.13935.

    22. Chen Q.W. #, Li J.X. #, Liu Z.X., Mitsuhashi T., Zhang Y.T., Liu H.L., Ma Y.H., He J., Shinada T., Sato T., Wang Y., Liu H.W., Abe I., Zhang P.*, Wang G.D*.Molecular Basis for Sesterterpene (C25) Diversity Produced by Plant Terpene Synthases. Plant Communications. 2020. 1(5), 100051.doi: 10.1016/j.xplc.2020.100051.

    23. Liu Z.F.#, Li J.X.#, Sun Y.W., Zhang P.*, Wang Y.*. Structural insights into the catalytic mechanism of a plant diterpene glycosyltransferase SrUGT76G1. Plant Communications. 2020 1(1), 100004. doi: 10.1016/j.xplc.2019.100004.

    24. Wang C.C., Sun B., Zhang X., Huang X.W., Zhang M.H., Guo H., Chen X., Huang F., Chen T.Y., Mi H.L., Yu F., Liu L.N., Zhang P.*.Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nat Plants. 2019. 5(11):1184-1193. doi: 10.1038/s41477-019-0538-1.

    25. He J, Zhang C, Dai H, Liu H, Zhang X, Yang J, Chen X, Zhu Y, Wang D, Qi X, Li W, Wang Z, An G, Yu N, He Z, Wang YF, Xiao Y, Zhang P, Wang E. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice.Mol Plant. 2019. 12(12):1561-1576. doi: 10.1016/j.molp.2019.10.015.

    26. Sun Y.W., Chen Z., Li J.X., Li .JH., Lv H.J., Yang J.Y., Li W.W., Xie D.A., Xiong Z.Q., Zhang P., Wang Y. Diterpenoid UDP-glycosyltransferases from Chinese Sweet Tea and Ashitaba Complete the Biosynthesis of Rubusoside. Mol Plant. 2018.11(10):1308-1311. doi.10.1016/j.molp.2018.05.010

    27. Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H. (2018) UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat Plants. 4(2):98-107.doi: 10.1038/s41477-017-0099-0.

    28. Li J.X. #, Wang C.Y.# , Yang G.H., Sun Z., Guo H., Shao K., Gu Y., Jiang W.H.*, Zhang P.*. Molecular mechanism of environmental D-xylose perception by a XylFII-LytS complex in bacteria. Proc Natl Acad Sci U S A. 2017a. 114(31):8235-8240. doi: 10.1073/pnas.1620183114.

    29. Fang X., Li J.X., Huang J.Q., Xiao Y.L., Zhang P., Chen X.Y. Systematic identification of functional residues of Artemisia annua amorpha-4,11- dienesynthase. Biochem J. 2017. 474(13):2191-2202. doi: 10.1042/BCJ20170060.

    30. Zhou F.#, Wang C.Y.# , Gutensohn M.#, Jiang L, Zhang P., Zhang D.B., Dudareva N.*, Lu S.*. A Novel Recruiting Protein of Geranylgeranyl Diphosphate Synthase Controls Metabolic Flux towards Chlorophyll Biosynthesis in Rice. Proc Natl Acad Sci U S A. 2017b.114(26):6866-6871. doi:10.1073/pnas.1705689114.

    31. Bao Z.H.#, Qi X.F.#, Hong S., Xu K., He F.Y., Zhang M.H., Chen J.G., Chao D.Y., Zhao W., Li D.F., Wang JW.*, Zhang P.*. Structure and mechanism of a group‐I cobalt energy coupling factor transporter. Cell Res. 2017. 27(5):675-687. doi: 10.1038/cr.2017.38.

    32. Qi X.F., Lin W., Ma M.L., Wang C.Y., He Y., He N.S., Gao J., Zhou H., Xiao Y.L., Wang Y., and Zhang P. Structural basis of rifampin inactivation by rifampin phosphotransferase. Proc Natl Acad Sci U S A. 2016. 113 (14) 3803-3808. doi: 10.1073/pnas.1523614113.

    33. Wang C. #, Chen Q. #, Fan D., Li J., Wang G.*, and Zhang P.*. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants. Mol Plant. 2016. 9(2):195-204. doi: 10.1016/j.molp.2015.10.010. (Cover & Highlight)

    34. Zhao Q. #, Wang C.C. #, Wang C.Y., Guo H., Bao Z.H., Zhang M.H., Zhang P. Structures of FolT at substrate-bound and substrate-released conformations reveal a gating mechanism of ECF transporters. Nat Commun. 2015. 6:7661. doi: 10.1038/ncomms8661.

    35. Yu F. #, He F.Y. #, Yao H.Y., Wang C.Y., Wang J.C., Li J.X., Qi X.F., Xue H.W.*, Ding J.P.*, Zhang P.*. Structural basis of intramitochondrial phosphatidic acid transport mediated by Ups1-Mdm35 complex. EMBO Rep. 2015. 16 (7). 813-823. doi: 10.15252/embr.201540137. (Recommended by Faculty 1000, Biology)

    36. Li X.M., Chao D.Y., Wu Y., Huang X.H., Chen K., Cui L.G., Su L., Ye W.W., Chen H., Chen H.C., Dong N.Q., Guo T., Shi M., Feng Q., Zhang P., Han B., Shan J.X.*, Gao J.P.*, Lin H.X.*. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.Nat Genet. 2015. 47(7):827-833. doi: 10.1038/ng.3305. 

    37. Zhang M.H.#, Bao Z.H.#, Zhao Q., Guo H., Xu K., Wang C.C., Zhang P.*. Structure of a pantothenate transporter and implications for ECF module sharing and energy coupling of group II ECF transporters.Proc Natl Acad Sci U S A. 2014. 111(52):18560-18565. doi: 10.1073/pnas.1412246112.

    38. Yang X., Ren W.Q., Zhao Q.X., Zhang P, Wu F.J., He Y.K.*. Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res. 2014. 42(19):12224-12236. doi: 10.1093/nar/gku907.

    39. Zhang Z.L., Wu J., Lin W., Wang J., Yan H., Zhao W., Ma J., Ding J.P.*, Zhang P.*., and Zhao G.P.*. Subdomain II of alpha-isopropylmalate synthase is essential for activity: Inferring a mechanism of feedback inhibition. J Biol Chem. 2014. 289(40): 27966-27978. doi: 10.1074/jbc.M114.559716.

    40. Lin W., Wang Y., Han X.B., Zhang Z.L.,Wang C.Y., Wang J., Yang H.Y., Lu Y.H., Jiang W.H., Zhao G.P.*., Zhang P.*. Atypical OmpR/PhoB subfamily response regulator GlnR of actinomycetes functions as a homodimer, stabilized by the unphosphorylated conserved Asp-focused charge. J Biol Chem. 2014. 289(22): 15413-15425. doi: 10.1074/jbc.M113.543504.

    41. Zhang P. Structure and mechanism of energy-coupling factor transporters. Trends Microbiol. 2013. 21(12):652-659. doi: 10.1016/j.tim.2013.09.009.Invited review

    42. Xu K. #, Zhang M.H. #, Zhao Q. #, Yu F. #, Guo H., Wang C.Y., He F.Y., Ding J.P., Zhang P. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature. 2013. 497(7448):268-271. doi: 10.1038/nature12046. (Recommended by Faculty 1000, Biology; Highlighted by Nature China.)

    43. Li J.X. #, Fang X. #, Zhao Q., Ruan J.X., Yang C.Q., Wang L.J., Miller D.J., Faraldos J.A., Allemann R.K., Chen X.Y.*, Zhang P.*. Rational engineering of plasticity residues of sesiquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Biochem J. 2013. 451(3):417-426. doi: 10.1042/BJ20130041.

    44. Zhang P., Wang J.W. and Shi Y. Structure and mechanism of the S component of a bacterial ECF transporter. Nature. 2010; 468(7324): 717-720. doi: 10.1038/nature09488. (Recommended by Faculty 1000, Biology)

    45. Zhang P.#, Ma J.#, Zhang Z., Zha M., Xu H., Zhao G., Ding J.*. Molecular basis of the inhibitor selectivity and insights into the feedback inhibition mechanism of citramalate synthase from Leptospira interrogans. Biochem J. 2009; 421(1):133-43. doi: 10.1042/BJ20090336.

    46. Ma J.#, Zhang P.#, Zhang Z.L., Zha M.W., Xu H., Zhao G..P., and Ding J.*. Molecular basis of the substrate specificity and the catalytic mechanism of citramalate synthase from Leptospira interrogans. Biochem J. 2008; 415(1):45-56. doi: 10.1042/BJ20080242.

    47. Zhang P., Zhao J., Wang B., Du J., Lu Y., Chen J. and Ding J.*. The MRG domain of human MRG15 uses a shallow hydrophobic pocket to interact with the N-terminal region of PAM14.Protein Sci. 2006; 15(10):2423-2434. doi: 10.1110/ps.062397806.

    48. Zhang P.#, Du J.#, Sun B., Dong X., Xu G.., Zhou J., Huang Q., Liu Q., Hao Q. and Ding J.*. Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3.Nucleic Acids Res. 2006; 34(22):6621-6628. doi: 10.1093/nar/gkl989.