结构生物学
张鹏
个人简介
1998.9-2002.7 本科 山东大学生物化学与分子生物学系
2002.9-2008.1 博士 中国科学院上海生物化学与细胞生物学研究所
2008.2-2010.10 博士后 美国普林斯顿大学分子生物学系
2010.10-2020.4 研究员 中国科学院上海生命科学研究院植物生理生态研究所
2020.5-至今 研究员 中国科学院分子植物科学卓越创新中心
张鹏曾入选国家基金委“优青”、“杰青”,上海市“浦江人才”、“优秀学术带头人”,中国科学院上海生科院“S类”人才、英国皇家学会“牛顿高级人才”等。主持科技部、基金委、中科院、上海市多项科研项目。兼任上海市生物物理学会理事长,中国生物物理学会理事,中国植物生理与分子生物学学会代谢专业委员会副主任,中国植物学会整合组学专业委员会副主任,中国生化与分子生物学会农业分会常务理事。
研究工作
研究组利用结构生物学、生物化学与遗传学的技术与方法,开展【植物跨膜过程分子机理与性状设计】研究;致力于通过植物重要生理过程跨膜转运与信号传递蛋白的三维结构解析,揭示植物生命过程的分子规律,指导开展植物/作物性状改良与优化的精准分子设计。
过去几年中,围绕“植物如何感知光并高效利用光能”这一关键科学问题,在植物光信号感知、光合效率调控、营养物质吸收与转运领域取得了一系列研究成果,为进一步通过分子设计提升光合作用效率提供了新靶点与新策略。研究论文以通讯作者发表于 Nature、Nat Plants、Nat Struct Mol Biol、Cell Res、Sci Adv、Nat Commun、PNAS、Mol Plant等期刊。
主要成果
1.光信号感知与分子设计
聚焦“植物如何感知光”的关键科学问题,系统研究蓝光受体CRY的光激活与信号传递机制。通过解析其光激活状态下的三维结构,揭示了蓝光感知的分子过程(Nat Struct Mol Biol, 2020),并阐明了CRY与不同效应蛋白动态组装光信号复合体的多样化机制(Sci Adv, 2025b & c; Plant Commun, 2023)。这些工作揭示了植物感知并传递光信号的分子基础;在此基础上,我们计划开展CRY的分子设计,期望可以精准操控植物对光的感知从而实现性状改良。
2.跨膜转运调控光合作用效率的机理与设计
针对“植物如何利用光”这一重要科学问题,对调控光合作用效率关键过程-CO₂浓缩机制(CCM)和气孔导度调控-中跨膜转运的分子与调控机理进行了系统研究。【CCM方面】,揭示了藻类与高等植物“CO2载体”-碳酸氢根/双羧酸转运蛋白的转运与调控机制(Nat Plants, 2019, 2026; Plant Cell, 2026;PNAS, 2021),并基于结构信息实现了碳酸氢根转运蛋白的鉴定与理性设计,为利用CCM改造C3植物提供了新元件。【气孔导度调控方面】,揭示了CNGC、GORK、PHO1和ClCa 等离子转运蛋白调控气孔开闭的新机理(Nat Plants, 2025a &b; Nat Commun, 2023, 2025),获得了设计与优化的新靶点;深入阐释了调控气孔运动关键激素ABA/JA跨膜运输中的底物识别与转运机制(Nat Plants, 2023 & 2024)。系列研究不仅产生了光合作用效率调控的新认知,也为高光效、高水分利用效率的作物设计提供了新靶点与新策略。
3.营养物质转运的分子与调控机制
鉴于植物营养高效与光合碳同化的紧密关系,对植物营养物质(氮、磷、钾)吸收与转运的分子过程进行了系列研究。【氮吸收与转运方面】,揭示了硝酸盐转运进入液泡储存的分子与调控机制(Nat Commun, 2023)、碳同化-氮代谢耦合中“底物-产物”跨叶绿体膜转运的分子机制(Plant Cell, 2026)。【磷吸收与转运方面】,揭示了地上部磷转运关键蛋白PHO1的类通道机制及如何受植物体内磷水平调控的分子机制(Nat Plants, 2025a)、SPDT蛋白在磷分配中的底物识别特异性(Sci Adv, 2025a)。【钾吸收与转运方面】,揭示了钾离子参与的气孔运动调节过程(Nat Commun, 2025)。研究组还对细菌和植物中广泛存在一类独特的 ABC 转运蛋白-ECF转运蛋白-开展了系统研究,阐明了其跨膜转运维生素B等营养物质的结构与独特机理(Cell Res, 2017; Nat Commun, 2015; PNAS, 2014; Nature, 2013)。这些研究揭示了植物营养水平感知利用与光合碳同化的调控机理,为光合高效作物设计提供了新思路。
ORCID: 0000-0003-0408-2923
1. Yang Z.*, Zhang X., Zheng J.T., Zhou S.H., Lyu M.J., Ma M.L., Zhu X.G., Yu F., Zhang P. *. Structural and evolutionary insights into substrate specificity and transport mechanism of chloroplast dicarboxylate transporters DiT1 and DiT2. Plant Cell. (2026-accepted)
2. Guo J.#, Yang Z.#,*, Zhang X., Liu F., Ma M., Yu F., Huang J.*, Zhang P.*. Structure of Chlamydomonas reinhardtii LciA guided the engineering of FNT family proteins to gain bicarbonate transport activity. Nat Plants. 2026. doi:10.1038/s41477-025-02200-9.
3.Yang Z. Zhang P. Structure-based engineering of bicarbonate transport activity unlocks the CO2 concentrating mechanism. Nat Plants. 2026. (Invited Research Briefing)
4. Liu Y.Q. #, Zhao Z.W. #, Zhang X., Hao Y.H., Feng F., Chen Y., Wang J., Ma M.L., Li J.X., Yu.F.*, Liu H.T.*, Zhang P.*. Structural assembly of maize CRY-GL2 photosignaling complex 2 provides insights into its regulatory role in cuticular wax biosynthesis. Sci Adv. 2025c 11(49): eadz0136. doi:10.1126/sciadv.adz0136.
5. Liu Y.Q. #, Chen Y. #, Zhang X., Li M.X., Wang J., Yang Z., Ma M.L., Zhao Z.W., Liu H.T., Yu.F., Zhang P.*. Molecular basis of very-long-chain fatty acid elongation by the CER6-GL2 enzyme complex in plant wax biosynthesis. Sci Adv. 2025b 11(49): eadz0135. doi:10.1126/sciadv.adz0135.
6. Fang S., Zhao Y., Zhang X., Yu.F.*, Zhang P.*. Molecular mechanism underlying phosphate distribution by SULTR family transporter SPDT in Oryza sativa. Sci Adv. 2025a. 11(41):eady3442.doi: 10.1126/sciadv.ady3442.
7. Zhang X.#, Carroll W.#, Nguyen T.B.#, Nguyen T.H., Yang Z., Ma M.L., Huang X.W., Hills A., Guo H., Karnik R., Blatt M.R.*, Zhang P. *. GORK K+ channel structure and gating vital to informing stomatal engineering. Nat Commun. 2025.16:1961. doi:10.1038/s41467-025-57287-7.
8. Wang J.P.#, Du B.Y.#, Zhang X.#, Qu X.M., Yang Y., Yang Z., Wang Y.F.*, Zhang P.* Cryo-EM structures of Arabidopsis CNGC1 and CNGC5 reveal molecular mechanisms underlying gating and calcium selectivity. Nat Plants. 2025b. 11(3):632-642. doi:10.1038/s41477-025-01923-z.
9.Fang S.#, Yang Y.#, Zhang X.#, Yang Z., Zhang M.H., Zhao Y., Zhang C.S., Yu F., Wang Y.F.*, Zhang P.*. Structural mechanism underlying PHO1;H1 mediated phosphate transport in Arabidopsis. Nat Plants. 2025a. 11(2):309-320. doi:10.1038/s41477-024-01895-6.
10. Tan X.H. # , Wang D.P. # , Zhang X.W., Zheng S., Jia X.J., Liu H. , Liu Z.L. , Yang H. , Dai H.L. , Chen X., Qian Z.X. , Wang R. , Ma M.L. , Zhang P., Yu N. , Wang E.T. A pair of LysM receptors mediates symbiosis and immunity discrimination in Marchantia. Cell. 2025. S0092-8674(24)01466-1. doi: 10.1016/j.cell.2024.12.024.
11. Hao Y., Zeng Z., Yuan M, Li H., Guo S., Yang Y., Jiang S., Hawara E., Li J., Zhang P., Wang J., Xin X., Ma W., Liu H. The blue-light receptor CRY1 serves as a switch to balance photosynthesis and plant defense. Cell Host Microbe. 2025. 33(1):137-150.e6. doi:10.1016/j.chom.2024.12.003.
12. An N.#, Huang X.W.#, Yang Z., Zhang M.H., Ma M.L., Yu Fang., Jing L.Y., Du B.Y., Wang Y.F., Zhang X.*, Zhang P.*. Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16. Nat Plants. 2024. 10(12): 2052-2061. doi:10.1038/s41477-024-01839-0.
13. Zhou C.M.#, Li J.X.#, Zhang T.Q., Xu Z.G., Ma M.L., Zhang P.*, Wang J.W.*. The structure of B-ARR reveals the molecular basis of transcriptional activation by cytokinin. Proc Natl Acad Sci U S A. 2024. 121. e2319335121. doi: 10.1073/pnas.2319335121.
14. Huang X.W.#, Zhang X.#, An N., Zhang M.H., Ma M.L., Yang Y., Jing L.Y., Wang Y.F., Chen Z.G.*, Zhang P.*. Cryo-EM structure and molecular mechanism of abscisic acid transporter ABCG25. Nat Plants. 2023.9(10):1709-1719. doi:10.1038/s41477-023-01509-7
15. Yang Z.#, Zhang X.#, Ye S.W.#, Zheng J.T., Huang X.W., Yu F., Chen Z.G.*, Cai S.Q.*, Zhang P.*. Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids. Nat Commun. 2023. 14(1): 4879. doi: 10.1038/s41467-023-40624-z
16. Wang C.#, Yu L.Y.#, Zhang J.Y.#, Zhou Y.X. #, Sun B., Xiao Q.J., Zhang M.H., Liu H.Y., Li J.H., Li J.L., Luo Y.Z., Xu J., Lian Z., Lin J.W., Wang X., Zhang P., Guo L.*, Ren R.B.*, Deng D.*. Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1. Nat Commun. 2023. 14(1): 1727. doi: 10.1038/s41467-023-37411-1.
17. Li L.Z., Xu Z.G., Chang T.G., Wang L., Kang H., Zhai D., Zhang L.Y., Zhang P., Liu H.T., Zhu X.G., Wang J.W. Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds. Nat Commun. 2023. 14(1):290. doi: 10.1038/s41467-023-35966-7.
18.Ha Y.H. #, Zhang X. #, Liu Y.Q., Ma M.L., Huang X.W., Liu H.T., Zhang P. Cryo-EM structure of the CRY2 and CIB1 fragment complex provides insights into CIB1-mediated photosignaling. Plant Commun. 2023. 4(2):100475. doi: 10.1016/j.xplc.2022.100475.
19.Liu H.Y. #, Lin J.S. #, Luo Z.P. #, Sun J. #, Huang X.W. #, Yang Y., Xu J., Wang Y.F., Zhang P., Oldroyd G.E., Xie F. Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula. Proc Natl Acad Sci U S A. 2022.119 (34): e2205920119. doi: 10.1073/pnas.2205920119.
20.Fang S. #, Huang X.W.#, Zhang X.#,*, Zhang M.H., Hao YH, Guo H., Liu L.N., Yu F., Zhang P. Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. Proc Natl Acad Sci U S A. 2021.118 (22) e2101632118. doi: 10.1073/pnas.2101632118.
21.Xiao Y. #, Shao K. #, Zhou J.W. #, Wang L., Ma X.Q., Wu D., Yang Y.B., Chen J.F., Feng J.X., Qiu S., Lv Z.Y., Zhang L.*, Zhang P.*, and Chen W.S.*. Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Nat Commun. 2021.12 (1) 2828. doi: 10.1038/s41467-021-23095-y.
22. Liu G.Q.#, Zhao Y.L.#, He F.Y., Zhang P., Ouyang X.Y., Tang H.Z.*, Xu P.*. Structure-guided insights into heterocyclic ring-cleavage catalysis of the non-heme Fe (II) dioxygenase NicX. Nat Commun. 2021.12 (1) 1301. doi: 10.1038/s41467-021-21567-9.
23. Yang G.H. #, Hong S.#, Yang P.J.#, Sun Y.W., Wang Y., Zhang P., Jiang W.H. *, Gu Y.*. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nat Commun. 2021.12 (1) 790. doi: 10.1038/s41467-021-20974-2.
24. Yao Y. #, Li J. #., Lin Y. #, Zhou J., Zhang P.*, Xu Y.*. Structural insights into phospholipase D function. Prog Lipid Res. 2021. 81: 101070. doi: 10.1016/j.plipres.2020.101070.
25. Shao K. #, Zhang X. #, Li X. #, Hao Y.H., Huang X.W., Ma M.L., Zhang M.H., Yu F., Liu H.T.*, Zhang P.*. The oligomeric structures of plant cryptochromes. Nat. Struct. Mol. Biol. 2020. 27(5): 480-488. doi: 10.1038/s41594-020-0420-x.(Views and News in NSMB)
26. Li J.X.#, Yu F. #, Guo H., Xiong R.X., Zhang W.J., He F.Y., Zhang M.H., Zhang P. Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res. 2020.30(1): 61-69. doi: 10.1038/s41422-019-0244-6.
27. Thomas C., Aller SG, Beis K., Carpenter E.P., Chang G., Chen L., Dassa E., Dean M., Duong Van Hoa F., Ekiert D., Ford R., Gaudet R., Gong X., Holland I.B., Huang Y., Kahne D.K., Kato H., Koronakis V., Koth C.M., Lee Y., Lewinson O., Lill R., Martinoia E., Murakami S., Pinket H.W., Poolman B., Rosenbaum D., Sarkadi B., Schmitt L., Schneider E., Shi Y., Shyng S.L., Slotboom D.J., Tajkhorshid E., Tieleman D.P., Ueda K., Váradi A., Wen P.C., Yan N., Zhang P., Zheng H., Zimmer J., Tampé R. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett. 2020.594(23) :3767-3775. doi: 10.1002/1873-3468.13935.
28. Chen Q.W. #, Li J.X. #, Liu Z.X., Mitsuhashi T., Zhang Y.T., Liu H.L., Ma Y.H., He J., Shinada T., Sato T., Wang Y., Liu H.W., Abe I., Zhang P.*, Wang G.D*. Molecular Basis for Sesterterpene (C25) Diversity Produced by Plant Terpene Synthases. Plant Communications. 2020. 1(5), 100051.doi: 10.1016/j.xplc.2020.100051.
29. Liu Z.F.#, Li J.X.#, Sun Y.W., Zhang P.*, Wang Y.*. Structural insights into the catalytic mechanism of a plant diterpene glycosyltransferase SrUGT76G1. Plant Communications. 2020 1(1), 100004. doi: 10.1016/j.xplc.2019.100004.
30. Wang C.C., Sun B., Zhang X., Huang X.W., Zhang M.H., Guo H., Chen X., Huang F., Chen T.Y., Mi H.L., Yu F., Liu L.N., Zhang P.*. Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nat Plants. 2019. 5(11):1184-1193. doi: 10.1038/s41477-019-0538-1.
31. He J, Zhang C, Dai H, Liu H, Zhang X, Yang J, Chen X, Zhu Y, Wang D, Qi X, Li W, Wang Z, An G, Yu N, He Z, Wang YF, Xiao Y, Zhang P, Wang E. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol Plant. 2019. 12(12):1561-1576. doi: 10.1016/j.molp.2019.10.015.
32. Sun Y.W., Chen Z., Li J.X., Li .JH., Lv H.J., Yang J.Y., Li W.W., Xie D.A., Xiong Z.Q., Zhang P., Wang Y. Diterpenoid UDP-glycosyltransferases from Chinese Sweet Tea and Ashitaba Complete the Biosynthesis of Rubusoside. Mol Plant. 2018.11(10):1308-1311. doi.10.1016/j.molp.2018.05.010
33. Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H. (2018) UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat Plants. 4(2):98-107. doi: 10.1038/s41477-017-0099-0.
34. Li J.X. #, Wang C.Y. # , Yang G.H., Sun Z., Guo H., Shao K., Gu Y., Jiang W.H.*, Zhang P.*. Molecular mechanism of environmental D-xylose perception by a XylFII-LytS complex in bacteria. Proc Natl Acad Sci U S A. 2017a. 114(31):8235-8240. doi: 10.1073/pnas.1620183114.
35. Fang X., Li J.X., Huang J.Q., Xiao Y.L., Zhang P., Chen X.Y. Systematic identification of functional residues of Artemisia annua amorpha-4,11- dienesynthase. Biochem J. 2017. 474(13):2191-2202. doi: 10.1042/BCJ20170060.
36. Zhou F.#, Wang C.Y.# , Gutensohn M.#, Jiang L, Zhang P., Zhang D.B., Dudareva N.*, Lu S.*. A Novel Recruiting Protein of Geranylgeranyl Diphosphate Synthase Controls Metabolic Flux towards Chlorophyll Biosynthesis in Rice. Proc Natl Acad Sci U S A. 2017b.114(26):6866-6871. doi:10.1073/pnas.1705689114.
37. Bao Z.H. #, Qi X.F. #, Hong S., Xu K., He F.Y., Zhang M.H., Chen J.G., Chao D.Y., Zhao W., Li D.F., Wang JW. *, Zhang P.*. Structure and mechanism of a group‐I cobalt energy coupling factor transporter. Cell Res. 2017. 27(5):675-687. doi: 10.1038/cr.2017.38.
38. Qi X.F., Lin W., Ma M.L., Wang C.Y., He Y., He N.S., Gao J., Zhou H., Xiao Y.L., Wang Y., and Zhang P. Structural basis of rifampin inactivation by rifampin phosphotransferase. Proc Natl Acad Sci U S A. 2016. 113 (14) 3803-3808. doi: 10.1073/pnas.1523614113.
39. Wang C. #, Chen Q. #, Fan D., Li J., Wang G.*, and Zhang P.*. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants. Mol Plant. 2016. 9(2):195-204. doi: 10.1016/j.molp.2015.10.010. (Cover & Highlight)
40. Zhao Q. #, Wang C.C. #, Wang C.Y., Guo H., Bao Z.H., Zhang M.H., Zhang P. Structures of FolT at substrate-bound and substrate-released conformations reveal a gating mechanism of ECF transporters. Nat Commun. 2015. 6:7661. doi: 10.1038/ncomms8661.
41. Yu F. #, He F.Y. #, Yao H.Y., Wang C.Y., Wang J.C., Li J.X., Qi X.F., Xue H.W.*, Ding J.P.*, Zhang P.*. Structural basis of intramitochondrial phosphatidic acid transport mediated by Ups1-Mdm35 complex. EMBO Rep. 2015. 16 (7). 813-823. doi: 10.15252/embr.201540137. (Recommended by Faculty 1000, Biology)
42. Li X.M., Chao D.Y., Wu Y., Huang X.H., Chen K., Cui L.G., Su L., Ye W.W., Chen H., Chen H.C., Dong N.Q., Guo T., Shi M., Feng Q., Zhang P., Han B., Shan J.X.*, Gao J.P.*, Lin H.X.*. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet. 2015. 47(7):827-833. doi: 10.1038/ng.3305.
43. Zhang M.H.#, Bao Z.H.#, Zhao Q., Guo H., Xu K., Wang C.C., Zhang P.*. Structure of a pantothenate transporter and implications for ECF module sharing and energy coupling of group II ECF transporters. Proc Natl Acad Sci U S A. 2014. 111(52):18560-18565. doi: 10.1073/pnas.1412246112.
44. Yang X., Ren W.Q., Zhao Q.X., Zhang P, Wu F.J., He Y.K.*. Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res. 2014. 42(19):12224-12236. doi: 10.1093/nar/gku907.
45. Zhang Z.L., Wu J., Lin W., Wang J., Yan H., Zhao W., Ma J., Ding J.P.*, Zhang P.*., and Zhao G.P.*. Subdomain II of alpha-isopropylmalate synthase is essential for activity: Inferring a mechanism of feedback inhibition. J Biol Chem. 2014. 289(40): 27966-27978. doi: 10.1074/jbc.M114.559716.
46. Lin W., Wang Y., Han X.B., Zhang Z.L.,Wang C.Y., Wang J., Yang H.Y., Lu Y.H., Jiang W.H., Zhao G.P.*., Zhang P.*. Atypical OmpR/PhoB subfamily response regulator GlnR of actinomycetes functions as a homodimer, stabilized by the unphosphorylated conserved Asp-focused charge. J Biol Chem. 2014. 289(22): 15413-15425. doi: 10.1074/jbc.M113.543504.
47.Zhang P. Structure and mechanism of energy-coupling factor transporters. Trends Microbiol. 2013. 21(12):652-659. doi: 10.1016/j.tim.2013.09.009.(Invited review)
48.Xu K. #, Zhang M.H. #, Zhao Q. #, Yu F. #, Guo H., Wang C.Y., He F.Y., Ding J.P., Zhang P. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature. 2013. 497(7448):268-271. doi: 10.1038/nature12046. (Recommended by Faculty 1000, Biology; Highlighted by Nature China.)
49. Li J.X. #, Fang X. #, Zhao Q., Ruan J.X., Yang C.Q., Wang L.J., Miller D.J., Faraldos J.A., Allemann R.K., Chen X.Y.*, Zhang P.*. Rational engineering of plasticity residues of sesiquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Biochem J. 2013. 451(3):417-426. doi: 10.1042/BJ20130041.
50.Zhang P., Wang J.W. and Shi Y. Structure and mechanism of the S component of a bacterial ECF transporter. Nature. 2010; 468(7324): 717-720. doi: 10.1038/nature09488. (Recommended by Faculty 1000, Biology)
51.Zhang P.#, Ma J.#, Zhang Z., Zha M., Xu H., Zhao G., Ding J.*. Molecular basis of the inhibitor selectivity and insights into the feedback inhibition mechanism of citramalate synthase from Leptospira interrogans. Biochem J. 2009; 421(1):133-43. doi: 10.1042/BJ20090336.
52. Ma J.#, Zhang P.#, Zhang Z.L., Zha M.W., Xu H., Zhao G..P., and Ding J.*. Molecular basis of the substrate specificity and the catalytic mechanism of citramalate synthase from Leptospira interrogans. Biochem J. 2008; 415(1):45-56. doi: 10.1042/BJ20080242.
53.Zhang P., Zhao J., Wang B., Du J., Lu Y., Chen J. and Ding J.*. The MRG domain of human MRG15 uses a shallow hydrophobic pocket to interact with the N-terminal region of PAM14. Protein Sci. 2006; 15(10):2423-2434. doi: 10.1110/ps.062397806.
54.Zhang P.#, Du J.#, Sun B., Dong X., Xu G.., Zhou J., Huang Q., Liu Q., Hao Q. and Ding J.*. Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3. Nucleic Acids Res. 2006; 34(22):6621-6628. doi: 10.1093/nar/gkl989.