个人信息

博士生导师
研究员

Email: whtang@cemps.ac.cn
个人网页: http://sippe.ac.cn/tangwh/

研究方向

植物-真菌相互作用及植物生殖发育研究

唐威华

个人简介

1989年9月-1993年7月 复旦大学遗传学及遗传工程系遗传学专业本科毕业,授予学士学位。
1993年9月-1999年9月 中国科学院上海植物生理所植物分子遗传国家重点实验室分子遗传学专业博士毕业,授予博士学位。
2000年5月-2004年4月 美国加州大学伯克利分校植物和微生物学系,Plant Gene Expression Center从事博士后研究。
2004年5月-2006年2月 美国杜邦公司所属Pioneer Hi-bred International Inc.,作为visiting scientist参加信号传导研究。
2006年3月-2006年5月 美国加州大学伯克利分校Plant Gene Expression Center,作为visiting scientist研究植物生殖发育。
2006年5月起 应聘为中国科学院植物生理生态研究所研究组长,研究员。

研究工作

围绕细胞顶端生长的分子机制与信号转导,以植物病原真菌的菌丝和显花植物的花粉管为两个模式系统,从事两方面研究:重要植物病原真菌禾谷镰孢侵染玉米、小麦等宿主致病的分子机理,以及宿主植物细胞等对真菌侵染的应答反应和抗/感病分子机制;植物有性生殖发育的调控机理,主要集中在分析花粉受体激酶(LePRKs)的信号转导途径及其对花粉管生长的调控。

主要成果

1、揭示小麦赤霉病菌禾谷镰孢(Fusarium graminearum)在小麦体内顶端生长的细胞学进程,激光微切割获得禾谷镰孢侵染中的动态转录组分析揭示其侵染策略(Zhang et al., Plant Cell, 2012);揭示禾谷镰孢菌侵染玉米导致赤霉茎腐病的细胞学进程和侵染时期特异性转录组,并阐明禾谷镰孢菌通过合成无磷膜脂克服玉米茎部细胞间磷匮乏的侵染新机制(Zhang et al., PLoS Pathogens, 2016); 发现并鉴定出一个新型的线性非核糖体八肽镰孢菌素A是赋予禾谷镰孢菌以细胞到细胞穿壁生长侵染小麦能力的效应因子(Jia et al., Nature Communications, 2019);研究发现N-羟基哌啶酸作为系统获得性抗性诱导分子在受到禾谷镰孢菌侵染时对小麦能起到部分保护作用(Zhang et al., Frontiers in Microbiology 2021)。

2、发现花粉管顶端生长从管状到出泡模式的转换由花粉受体激酶LePRK1、小G蛋白鸟苷转换因子KPP和微丝成束因子PLIM2a复合体控制(Gui et al., Plant Cell, 2014);阐明番茄雌蕊分泌的信号蛋白STIG1促进花粉管顶端生长加速的机制在于其结合花粉管表面磷脂酰肌醇3磷酸和花粉受体激酶LePRK2(Huang et al., Plant Cell, 2014);研究阐明花粉管特异小G蛋白鸟苷转换因子KPP联结花粉受体激酶LePRK1/2、ROP小G蛋白以及微丝成束因子PLIM2a、微丝成核因子ARP2/3复合体,象变阻器一样可逆调控番茄花粉管生长速度,且在控制花粉管形态中起重要作用(Liu et al., Plant Phys. 2020)。

    1. Zuo N, Bai WZ, Wei WQ, Yuan TL, Zhang D, Wang YZ*, Tang WH* (2022) Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance. Cell Rep. 41(13):111877. doi:10.1016/j.celrep.2022.111877

    2. Tang Z, Tang H, Wang W, Xue Y, Chen D, Tang W*, Liu W* (2021) Biosynthesis of a new fusaoctaxin virulence factor in Fusarium graminearum relies on a distinct path to form a guanidinoacetyl starter unit priming nonribosomal octapeptidyl assembly. J Am Chem Soc. 143(47):19719-19730. doi:10.1021/jacs.1c07770

    3. Ma B, Zhang L, Gao Q, Wang J, Li X, Wang H, Liu Y, Lin H, Liu J, Wang X, Li Q, Deng Y, Tang W*, Luan S*, He Z* (2021) A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat Genet. 53(6), 906–915. doi: 10.1038/s41588-021-00855-6.

    4. Zhang E#, Zhang H#, Tang WH*(2021) Transcriptomic Analysis of Wheat Seedling Responses to the Systemic Acquired Resistance Inducer N-Hydroxypipecolic Acid. Frontiers in Microbiology 12:621336

    5. Fan P, Aguilar E, Bradai M, Xue H, Wang H, Rosas-Diaz T, Tang W, Wolf S, Zhang H, Xu L, Lozano-Durán R*. (2021) The receptor-like kinases BAM1 and BAM2 are required for root xylem patterning. Proc Natl Acad Sci U S A. 118(12): e2022547118.

    6. Liu HK#, Li YJ#, Wang SJ, Yuan TL, Huang WJ, Dong X, Pei JQ, Zhang D, McCormick S, Tang WH*. (2020) Kinase Partner Protein Plays a Key Role in Controlling the Speed and Shape of Pollen Tube Growth in Tomato. Plant Physiol. 184(4):1853-1869. doi: 10.1104/pp.20.01081.

    7. Jia LJ#, Tang HY#, Wang WQ#, Yuan TL, Wei WQ, Pang B, Gong XM, Wang SF, Li YJ, Zhang D, Liu W*, Tang WH* (2019) A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat Commun. 10(1):922.

    8. Guo Y, Yao S, Yuan TL, Wang Y, Zhang D, Tang WH* (2019) The spatiotemporal control of KatG2 catalase-peroxidase contributes to the invasiveness of Fusarium graminearum in host plants. Mol Plant Pathol. 20(5):685-700. doi: 10.1111/mpp.12785. (cover image)

    9. Zhang L, Cenci A, Rouard M, Zhang D, Wang YY*, Tang WH*, Zheng SJ* (2019). Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Scientific Reports 9(1): 8199.

    10. Li YJ, Pei JQ, Tang WH* (2019) What took you so long? Peptide-receptor kinase signaling mediates reproductive isolation in plants. Sci. Bulletin 64:1390-1392

    11. Yuan TL, Huang WJ, He J, Zhang D*, Tang WH*. (2018) Stage-specific gene profiling of germinal cells helps delineate the mitosis/meiosis transition. Plant Physiol. 176 (2) 1610-1626

    12. Zhang, L., Yuan, T., Wang, Y., Zhang, D., Bai, T., Xu, S., Wang, Y., Tang, W. Zheng, S-J* (2018) Identification and evaluation of resistance to Fusarium oxysporum f. sp. cubense tropical race 4 in Musa acuminata Pahang Euphytica 214: 106.

    13. Barberini ML, Sigaut L, Huang W, Mangano S, Juarez SPD, Marzol E, Estevez J, Obertello M, Pietrasanta L, Tang W, Muschietti J*. (2018) Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. Plant Reprod. 31(2):159-169

    14. Xie QN. Jia LJ. Wang YZ, Song RT, Tang WH* (2017) High-resolution gene profiling of infection process indicates serine metabolism adaptation of Fusarium graminearum in host, Science Bulletin, 62:758-760

    15. Yao SH, Guo Y, Wang YZ, Zhang D, Xu L, Tang WH* (2016) A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum, Fungal Genetics and Biology, 91:32-42

    16. Zhang Y, He J, Jia LJ, Yuan TL, Zhang D, Guo Y, Wang Y, Tang WH* (2016) Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates its Strategies in Confronting Phosphorus Limitation in the Host Apoplast. PLoS Pathogens 12(3): e1005485.

    17. Jia LJ, Tang, WH* (2015) The omics era of Fusarium graminearum: opportunities and challenges. New Phytol. 207(1):1-32.

    18. Gui CP#, Dong X#, Liu HK, Huang W, Zhang, D, Wang S, Barberini ML, Gao X, Muschietti J, McCormick S, Tang WH* (2014) Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. Plant Cell 26: 3538–3555, doi:10.1105/tpc.114.127381

    19. Huang WJ, Liu HK, McCormick S, Tang WH* (2014) Tomato Pistil Factor STIG1 Promotes in Vivo Pollen Tube Growth by Binding to Phosphatidylinositol 3-Phosphate and the Extracellular Domain of the Pollen Receptor Kinase LePRK2. Plant Cell. 26: 2505–2523, doi: 10.1105/tpc.114.123281

    20. Zhu P, Wu L, Liu L, Huang L, Wang Y, Tang W, Xu L* (2013) Fusarium asiaticum: an Emerging Pathogen Jeopardizing Postharvest Asparagus Spears. Journal of Phytopathology 161:696–703 doi: 10.1111/jph.12120

    21. Liu X, Zhang X, Tang WH, Chen L, Zhao XM* (2013) eFG: an electronic resource for Fusarium graminearum. Database (Oxford); doi: 10.1093/database/bat042

    22. Cheung A, Palanivelu R, Tang WH, Xue HW, Yang WC (2013) Pollen and Plant Reproduction Biology: Blooming from East to West. Molecular Plant 6 (4): 995-997

    23. Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X, Zhang D, Tang WH* (2012) In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. Plant Cell 24: 5159-5176

    24. Tang WH, Zhang Y, Duvick J* (2012) The Application of Laser Microdissection to Profiling Fungal Pathogen Gene Expression in planta. Methods in Molecular Biology: Plant Fungal Pathogens 835:219-36

    25. Lu T, Zhu C, Lu G, Guo Y, Zhou Y, Zhang Z, Zhao Y, Li W, Lu Y, Tang W, Feng Q, Han B* (2012) Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice. BMC Genomics 13:721.

    26. Tang, X., Zhang, Z.Y., Zhang, W.-J., Zhao, X.M., Li, X., Zhang, D., Liu, Q.Q. and Tang, W.H.* (2010) Global Gene Profiling of Laser-Captured Pollen Mother Cells Indicates Molecular Pathways and Gene Subfamilies Involved in Rice Meiosis. Plant Physiology 154: 1855-1870

    27. Liu X, Tang WH, Zhao XM*, Chen L* (2010) A Network Approach to Predict Pathogenic Genes for Fusarium graminearum. PLoS ONE 5(10): e13021.

    28. Zhao XM*, Zhang XW, Tang WH, Chen L (2009) FPPI: Fusarium graminearum Protein-Protein Interaction Database. J. Proteome Res. 8(10): 4714–4721

    29. Zhang, D., Wengier, D., Shuai, B., Gui, C.P., Muschietti, J., McCormick, S. and Tang, W-H.* (2008) The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiology 148:1368-1379

    30. Tang W, Coughlan S, Crane E, Beatty M, Duvick J* (2006) The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Mol. Plant Microbe Interactions 19: 1240-1250.

    31. Tang W, Kelley D, Ezcurra I, Cotter R, McCormick S* (2004) LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J. 39: 343-353

    32. Guyon V, Tang W, Monti M, Raiola A, Lorenzo G, McCormick S, Taylor L* (2004) Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube growth. Plant J. 39:643-654

    33. Wengier D, Valsecchi I, Cabanas ML, Tang W, McCormick S, Muschietti J* (2003) The pollen-specific receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract. Proc. Natl. Acad. Sci. USA 100:6860-6865

    34. Chen J, Tang W, Hong M, Wang Z* (2003) OsBP-73, a rice gene encodes a novel DNA-binding protein with a SAP-like domain and its genetic interference by double-stranded RNA inhibits rice growth. Plant Mol. Biol. 52:579-590.

    35. Tang W, Ezcurra I, Muschietti J, McCormick S* (2002) A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14: 2277-2287.