个人信息

博士生导师
研究员

Email: czzhao@psc.ac.cn
个人网页:

研究方向

植物细胞壁与逆境生物学

赵春钊

个人简介

2002年9月-2006年6月,宁波大学生命科学学院,学士
2006年9月-2014年1月,中国科学院遗传与发育生物学研究所,博士
2009年1月-2015年12月,荷兰瓦赫宁根大学,博士
2014年5月-2019年3月,美国普渡大学,博士后
2019年9月-至今,中国科学院分子植物科学卓越创新中心/上海植物逆境生物学研究中心,研究员

研究工作

土壤盐碱化是影响农业可持续性发展的主要环境胁迫之一,因此解析植物耐盐的分子机制,对于培育耐盐稳产作物和保障我国粮食安全具有重要的理论和应用意义。为了适应盐胁迫,植物需要感知周围高盐环境并启动下游信号通路来改变其自身形态和生理特性,因此感知盐胁迫是植物增强其耐盐性的关键一步,但是目前植物感受盐胁迫的分子机制还知之甚少。

细胞壁作为植物与环境互作的最前线,是植物感知环境胁迫的重要场所。研究表明盐胁迫会破坏细胞壁的完整性,而植物通过感受细胞壁的完整性来决定生长和耐盐性之间的平衡,因此细胞壁完整性的监测是植物感受盐胁迫并启动盐胁迫响应的一个重要途径。此外,植物体内含有大量能形成相分离的蛋白,这些蛋白具有天然的特性能够感知盐离子浓度、渗透压、温度或者pH等物理特性的变化,进而通过动态的相分离形成来传递环境胁迫信号。本课题组以模式植物拟南芥和农作物水稻为研究材料,从细胞壁完整性和相分离两方面来解析植物感受和传递盐胁迫信号的分子机制。主要研究方向包括:

1. 植物感受盐胁迫诱导的细胞壁变化的分子机制
2. 相分离在植物耐逆中的作用及其调控机制
3. 农作物耐逆遗传改良

主要成果

    1. Liu, X., Jiang, W., Li, Y., Nie, H., Cui, L., Li, R., Tan, L., Peng, L., Li, C., Luo, J., Li, M., Wang, H., Yang, J., Zhou, B., Wang, P., Liu, H., Zhu, J.K., and Zhao, C.* (2023) FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nature Plants In press.

    2. Li, C.#, Ran, M.#, Liu, J., Wang, X., Wu, Q., Zhang, Q., Yang, J., Yi, F., Zhang, H., Zhu, J.K., and Zhao, C.* (2022) Functional analysis of CqPORB in the regulation of chlorophyll biosynthesis in Chenopodium quinoa. Frontiers in Plant Science 13, 1083438.

    3. Zhou, F., Singh, S., Zhang, J., Fang, Q., Li, C., Wang, J., Zhao, C., Wang, P., and Huang, C.* (2022) The MEKK1-MKK1/2-MPK4 cascade phosphorylates and stabilizes STOP1 to confer aluminum resistance in Arabidopsis. Molecular Plant 16, 337-353.

    4. Colin, L., Ruhnow, F., Zhu, J.K, Zhao, C., Zhao, Y., and Persson, S.* (2022) The cell biology of primary cell walls during salt stress. Plant Cell 35, 201-217.

    5. Xu, H.*, Yang, X., Zhang, Y., Wang, H., Wu, S., Zhang, Z., Ahammed, G.J., Zhao, C., and Liu, H. (2022) CRISPR/Cas9-mediated mutation in auxin efflux carrier OsPIN9 confers chilling tolerance by modulating reactive oxygen species homeostasis in rice. Frontiers in Plant Science 13, 967031.

    6. Jiang, W.#, Li, C.#, Li, L., Li, Y., Wang, Z., Yu, F., Yi, F., Zhang, J., Zhu, J.K., Zhang, H., Li, Y., and Zhao, C.* (2022) Genome-wide analysis of CqCrRLK1L and CqRALF gene families in Chenopodium quinoa and their roles in salt stress response. Frontiers in Plant Science 13, 918594.

    7. Yu, Z.*, Ren, Y., Liu, J., Zhu, J.K., and Zhao, C.* (2022) A novel mitochondrial protein is required for cell wall integrity, auxin accumulation and root elongation in Arabidopsis under salt stress. Stress Biology 2, 13.

    8. Wang, Z.#, Wang, M.#, Yang, C., Zhao, L., Qin, G., Peng, L., Zheng, Q., Nie, W., Song, C.-P., Shi, H., Zhu, J.K., and Zhao, C.* (2021) SWO1 modulates cell wall integrity under salt stress by interacting with importin ɑ in Arabidopsis. Stress Biology 1, 9.

    9. Long, T., Xu, B., Hu, Y., Wang, Y., Mao, C., Wang, Y., Zhang, J., Liu, H., Huang, H., Liu, Y., Yu. G., Zhao, C., Li. Y., and Huang, Y.* (2021) Genome-wide identification of ZmSnRK2 genes and functional analysis of ZmSnRK2.10 in ABA signaling pathway in maize (Zea mays L). BMC Plant Biology 21, 1–17.

    10. Liu, J., Zhang, W., Long, S., and Zhao, C.* (2021) Maintenance of cell wall integrity under high salinity. International Journal of Molecular Sciences 22, 1–19.

    11. Zhu, Y.*, Huang, P., Guo, P., Chong, L., Yu, G., Sun, X., Hu, T., Li, Y., Hsu, C.C., Tang, K., Zhou, Y., Zhao, C., Gao, W., Tao, W.A., Mengiste, T., and Zhu, J.K. (2020) CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. New Phytologist 228, 1573-1590.

    12. Zhao, C.#*, Jiang, W.#, Zayed, O.#, Liu, X., Tang, K., Nie, W., Li, Y., Xie, S., Li, Y., Long, T., Liu, L., Zhu, Y., Zhao, Y., and Zhu, J.K.* (2021) The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. National Science Review 9, nwaa149.

    13. Zhao, C.*, Zhang, H., Song, C., Zhu, J.K., and Shabala, S.* (2020) Mechanisms of plant responses and adaptation to soil salinity. Innovation 1, 100017.

    14. Tang, K.#, Zhao, L.#, Ren, Y.#, Yang, S., Zhu, J.K., and Zhao, C.* (2020) The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. Journal of Integrative Plant Biology 62, 258–263. (Highly cited paper)

    15. Wang, P.#*, Hsu, C.-C.#, Du, Y.#, Zhu, P., Zhao, C., Fu, X., Zhang, C., Paez, J.S., Macho, A.P., Tao, W.A.*, and Zhu, J.K.* (2020) Mapping proteome-wide targets of protein kinases in plant stress responses. Proceedings of the National Academy of Sciences of the United States of America 117, 3270-3280.

    16. Yang, R.*, Hong, Y., Ren, Z., Tang, K., Zhang, H., and Zhu, J.K., Zhao C.* (2019) A role for PICKLE in the regulation of cold and salt stress tolerance in Arabidopsis. Frontiers in Plant Science 10, 900.

    17. Putarjunan, A., Ruble, J., Srivastava, A., Zhao, C., Rychel, A. L., Hofstetter, A. K., Tang, X., Zhu, J.K., Tama, F., Zheng, N.*, and Torii, K.* (2019) Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS. Nature Plants 5, 742-754.

    18. Zhao, C.#*, Zayed, O.#, Zeng, F., Liu, C., Zhang, L., Zhu, P., Hsu, C., Tuncil, Y., Tao, W.A., Carpita, N.C., Zhu, J.K.* (2019) Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytologist 224, 274-290.

    19. Zhao, C.#, Zayed, O.#, Yu, Z., Jiang, W., Zhu, P., Hsu, C., Zhang, L., Tao, W.A., and Zhu, J.K.* (2018) Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 115, 13123-13128. (Recommended by Faculty of 1000 and highly cited paper)

    20. Zhang, Y., Zhao, C., Li, L., Hsu, C., Zhu, J.K., Iliuk, A., and Tao, W.A.* (2018) High-throughput phosphorylation screening and validation through Ti(IV)-nanopolymer functionalized reverse phase phosphoprotein array. Analytical Chemistry 90, 10263–10270.

    21. Si, T., Wang, X., Zhao, C., Huang, M., Cai, J., Zhou, Q., Dai, T., and Jiang, D.* (2018) The role of hydrogen peroxide in mediating the mechanical wounding-induced freezing tolerance in wheat. Frontiers in Plant Science 9, 327.

    22. Cao, M.#, Zhang, Y.#, Liu, X.#, Huang, H., Zhou, X., Wang, W., Zeng, A., Zhao, C., Si, T., Du, J., Wu, W., Wang, F., Xu, H.E., and Zhu, J.K.* (2017) Combining chemical and genetic approaches to increase drought resistance in plants. Nature Communication. 8, 1183.

    23. Zhao, C., Wang, P., Si, T., Hsu, C., Wang, L., Zayed, O., Yu, Z., Zhu, Y., Dong, J., Tao, W.A., and Zhu, J.K.* (2017) MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Developmental Cell 43, 618-629. (Cover story)

    24. Yan, J.#, Wang, P.#, Wang, B., Hsu, C.-C., Tang, K., Zhang, H., Hou, Y.-J., Zhao, Y., Wang, Q., Zhao, C., Zhu, X., Tao, W.A., Li, J., and Zhu, J.K.* (2017) The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLOS Genetics 13, e1006753.

    25. Si, T., Wang, X., Wu, L., Zhao, C., Zhang, L., Huang, M., Cai, J., Zhou, Q., Dai, T., Zhu, J.K., and Jiang, D.* (2017) Nitric oxide and hydrogen peroxide mediate wounding-induced freezing tolerance through modifications in photosystem and antioxidant system in wheat. Frontiers in Plant Science 8, 1284.

    26. Wang, L.#, Li, H.#, Zhao, C.#, Li, S.#, Kong, L., Wu, W., Kong, W., Liu, Y., Wei, Y., Zhu, J.K., and Zhang, H.* (2017) The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. Plant Cell and Environment 40, 56–68.

    27. Yan, J.#, Zhao, C.#, Zhou, J., Yang, Y., Wang, P., Zhu, X., Tang, G., Bressan, R.A., and Zhu, J.K.* (2016) The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in Arabidopsis thaliana. PLOS Genetics 12, e1006416.

    28. Zhao, C., and Zhu, J.K.* (2016) The broad roles of CBF genes: From development to abiotic stress. Plant Signaling Behavior 11, e1215794.

    29. Zhao, C.#, Zhang, Z.#, Xie, S., Si, T., Li, Y., and Zhu, J.K.* (2016) Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology 171, 2744–2759. (Highly cited paper)

    30. Zhao, C., Lang, Z., and Zhu, J.K.* (2015) Cold responsive gene transcription becomes more complex. Trends in Plant Science 20, 466–468.

    31. Zhao, C., Nie, H., Shen, Q., Zhang, S., Lukowitz, W., and Tang, D.* (2014) EDR1 physically interacts with MKK4/MKK5 and negatively regulates a MAP kinase cascade to modulate plant innate immunity. PLOS Genetics 10, e1004389.

    32. Zhao, C., Waalwijk, C., de Wit, P.J., Tang, D., and van der Lee, T.* (2014) Relocation of genes generates non-conserved chromosomal segments in Fusarium graminearum that show distinct and co-regulated gene expression patterns. BMC Genomics 15, 191.

    33. Zhao, C., Waalwijk, C., de Wit, P.J.G.M., Tang, D., and van der Lee, T.* (2013) RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics 14, 21.

    34. Nie, H., Zhao, C., Wu, G., Wu, Y., Chen, Y., and Tang, D.* (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiology 158, 1847–1859.

    35. van der Fels-Klerx, H.J., de Rijk, T.C., Booij, C.J.H., Goedhart, P.W., Boers, E.A.M., Zhao, C., Waalwijk, C., Mol, H.G.J., and van der Lee, T.A.J.* (2012) Occurrence of Fusarium Head Blight species and Fusarium mycotoxins in winter wheat in the Netherlands in 2009. Food Additives and Contaminants 29, 1716–1726.

    36. Zhao, C., Waalwijk, C., de Wit, P.J.G.M., van der Lee, T., and Tang, D.* (2011) EBR1, a Novel Zn2Cys6 transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. Molecular Plant-Microbe Interactions 24, 1407–1418.